Jurnal Ilmiah Teknik Sipil

Vol. 13, No.1, (2024) Februari: 67 - 74 E-ISSN: 2721-0073, P-ISSN: 2302-2523

Doi: http://dx.doi.org/10.46930/tekniksipil.v13i1.4191

STABILISASI TANAH LONGSOR DI RUAS JALAN LINTAS PAKKAT-DOLOK SANGGUL DENGAN MENGGUNAKAN BELERANG KRISTAL DAN ZEOLITH (BATU APUNG VULKANIK)

Oleh:

David Hutasoit ¹⁾,
Pernando Sihombing ²⁾
Semangat Debataraja ³⁾
Universitas Darma Agung,Medan ^{1,2,3)}
E-mail:

 $\underline{3}\underline{davidhutasoit@gmail.com^{1)}}$, pernandosihombing $\underline{406@gmail.com^{2)}}$

History Jurnal Ilmiah Teknik Sipil:

Received : 25 Desember 2023 Revised : 14 Januari 2024 Accepted : 10 Februari 2024 Published : 28 Februari 2024 **Publisher:** LPPM Universitas Darma Agung **Licensed:** This work is licensed under

http://creativecommons.org/licenses/by-nd/4.0

ABSTRACT

Stabilization is one of the ways and efforts made to improve the characteristics of the soil. Soil stabilization has been carried out by mixing the soil with cement, charcoal, zeolith and sulfur. But here the authors do mixing using sulfur with zeolith. In this study, soil stabilization was carried out in locations prone to landslides, precisely on Jalan Lintas Dolok Sanggul Coordinates 20 North Latitude, 980 East Longitude Purba Baringin, Kec. Pakkat, Kab. Humbang Hasundutan, North Sumatra. By using a combination of a mixture of zeolith and sulfur with a mixture of 5% sulfur content with variations in the addition of 3%, 6%, and 9% zeolite. With tests carried out in the laboratory, the results obtained from the original soil, namely water content of 4.5%, specific gravity of 2.67, and plastic index of 9.81%, based on the AASHTO soil classification the soil sample was included in the sandy silt soil with group A-2-4, and Based on USCS, the soil is classified as a coarse-grained soil (coarse-grained soil), with a maximum shear strength of 24.580 at an elevation of 1M with a cohesion of 0.21 kg/m2 (with a strong soil bearing capacity category) and after mixing on relatively disturbed soils there will be a landslide, the value of shear strength and cohesion increases with shear strength to 32.640 with a cohesion of 0.27 kg/m2 with a mixture of 9% zeolith and 5% sulfur with a curing period of 45 days

Keywords: Zeolith, Sulfur, Direct Shear Test

ABSTRAK

Stabilisasi merupakan salah satu cara dan upaya yang dilakukan untuk memperbaiki sifat karakteristik tanah. Stabilisasi tanah telah banyak dilakukan dengan mecampurkan tanah dengan semen, arang, zeolith dan belerang. Namun disini penulis melakukan pencampuran dengan menggunakan belerang dengan zeolith. Pada penelitian ini dilakukan stabilisasi pada tanah dilokasi yang rawan terjadi longsor tepatnya di Jalan Lintas Dolok Sanggul Koordinat 2° LU, 98° BT Purba Baringin, Kec. Pakkat, Kab. Humbang Hasundutan, Sumatera Utara. Dengan menggunakan kombinasi campuran zeolith dan belerang dengan kadar campuran 5% belerang dengan variasi penambahan 3%, 6%, dan 9% zeolith. Dengan pengujian yang

dilakukan di laboratorium diperoleh hasil dari tanah asli yaitu kadar air 4.5 %, berat jenis 2.67, dan indeks plastis 9,81%, berdasarkan klasifikasi tanah AASHTO sampel tanah tersebut termasuk kedalam tanah lanau berpasir dengan kelompok A-2-4, dan berdasarkan USCS tanah tersebut termasuk kedalam tanah berbutir kasar (*coarse-grained soil*), dengan kuat geser maksimum 24,58° dielevasi 1M dengan cohesi 0,21 kg/m² (dengan kategori daya dukung tanah kuat) dan setelah dilakukan pencampuran pada tanah terganggu yang relatif akan terjadi longsor nilai kuat geser dan kohesinya meningkat dengan kuat geser menjadi 32,64° dengan kohesi 0,27 kg/m² dengan campuran zeolith 9% dan belerang 5% dengan masa pemeraman 45 hari

Kata kunci: Zeolith, Belerang, Direct Shear Test

1. Pendahuluan

1.1. Latar Belakang

Ruas Jalan lalu lintas Pakka-Dolok sanggul ialah daerah yang sering sekali mengalami longsor baik skala kecil maupun besar, vang mengakibatkan negara mengalami banyak kerugian akibat penanganan longsor, oleh karena penulis disini melakukan penelitian untuk menganalisis sifat tanah yang mengakibatkan longsor dan penulis juga melakukan penanganan sebelum terjadinya longsor, dengan metode pencampuran tanah, zeolith, dan belerang.

1.2. Perumusan Masalah

Rumusan masalah meliputi sebagai berikut :

- Bagaimana hasil analisa pengujian indeks propertise tanah yang dilakukan dilaboratorium BPJN II MEDAN.
- 2. Bagaimana hasil analisa pengujian kuat geser tanah yang dilakukan dilaboratorium BPJN II MEDAN dengan uji *direct shear test* dari sampel tanah terganggu yang diambil ?
- 3. Bagaimana hasil perbaikan tanah melalui stabilisasi yang dilakukan di laboratorium BPJN II MEDAN dengan menggunakan campuran zeolith (batu apung vulkanik) dan belerang ?

1.3. Pembatasan Masalah

Adapun batasan masalah meliputi sebagagai berikut :

- Sampel diambil dari ruas jalan pakkatdolok sanggul
- 2. Pengujian yang dilakukan ialah
 - Pengujian indeks propertise

- Pengujian direct shear test
- Analisa faktor keamanan dengan FELLNIUS dan BISHOP
- Stabilisasi tanah dengan campuran belerang dan zeolith (batu apung vulkanik)

1.4. Tujuan Dan Manfaat Penelitian

Tujuan dan manfaat penelitian ini adalah sebagai berikut

- 1. Untuk mengetahui klasifikasi tanah dengan metode USCS dan AASHTO
- 2. Mengetahui parameter tanah dengan pengujian *direct shear test* pada tanah yang diambil dari rusa jalan lintas pakkat-dolok sanggul.
- 3. Mengetahui *safety factor* dengan metode FELLNIUS dan BISHOP
- 4. Untuk mengetahui kekuatan perbaikan tanah dengan melalui stabilisasi tanah dengan campuran zeolith dan belerang

1.5. Metodologi penelitian

Metodologi penelitian dilakukan dengan beberapa tahap sebagai berikut :

- Pengambilan sampel yang dilakukan didesa purba baringin, kecamatan pakkat, kabupaten humbang hasundutan
- 2. Pengambilan sampel dilakukan dengan metode bor secara vertikal
- 3. Pengujian sampel meliputi
 - Indeks Propertise
 - Direct shear test
 - UCT
- 4. Analisa *Safety Faktor* dilakukan dengan metode Fellnius dan Bishop

2. TINJAUAN PUSTAKA

2.1. Pengetian Tanah

Tanah adalah kumpulan dari bagianbagian padt yang tidak terikat antara satu dengan yang lain, dan rongga-rongga didalamnya berisi air dan udara (Verhoef 1994), dan menurut Bowles (1984) tanah merupakan campuaran partikel yang terdiri dari salah satu atau seluruh jenis berangkal, kerikil, pasir, lanau, lempung dan koloid.

2.2. Klasifikasi Tanah

Sistem klasifikasi tanah merupakan suatu sistem pengaturan beberapa jenis tanah yang berbeda-beda namun memiliki sifat yang sama kedalam kelompok-kelompok berdasarkan pemakaiannya. Tujuan dari klassifikasi ini ialah untuk membagi tanah menjadi beberapa golongan dan memberikan simbol nama yang sama untuk tanah dengan kondisi dan sifat yang serupa.

Ada dua klasifikasi yang biasa digunakan vaitu :

- 1. Sistem Klasifikasi AASHTO
- 2. Klasifikasi USCS

2.2.1. Sistem Klasifikasi AASHTO

AASHTO (American Association Of State Highway And Transportation dikembangkan oleh Official) insinyur jalan raya pada tahun 1929 setelah beberapa kali revisi hingga tahun 1945. Pada sistem klasifikasi AASHTO tanah dibagi menjadi tujuh kelompok yaitu A-1, A-2, A-3, A-4, A-5, A-6, A-7. Dimana tanah yang paling baik dikelompokkan kedalam kelas A-1 dan yang paling buruk dikelas A-7.

Berikut tabel klasifikasi tanah:

Kelas	Karakteristik Tanah				
A-1	Tanah terdiri dari kerikil, pasir kasar dengan sedikit atau tanpa buti halus, dengan atau tanpa sifat plastis.				
A-2	Terdiri dari pasir halus denga sedikit sekali butir halus lolos saringan No.200 dan tidak plastis.				

	tanah bebutir kasar dan halus				
A-3	dan merupakan campuran				
	kerikil/pasir dengan tanah				
	berbutir halus cukup banyak				
	(<35%).				
A-4	Tanah lanau dimana plastisitas				
	rendah				
	Tanah lanau yang nilai				
A-5	plastisitasnya lebih tinggi dari				
	A-4				
	Tanah lempung yang masing				
A-6	mengandung butiran pasir dan				
	kerikil, tetapi sifat perubahan				
	volumenya cukup besar				
A-7	Tanah lempung yang				
	perubahan yang cukup besar				

Sumber :AASTM dan AASHTO

2.2.2. Sistem Klasifikasi USCS

USCS (Unified Soil Classification System) pada tahun 1942, Casagrande memperkenalkan system ini dan digunakan pada sebuah pekerjaan pembuatan lapangan terbang saat perang dunia II dan dikerjakan oleh The Army Corps Of Engineers. Sistem disempurnakan saat menjalin kerjasama dengan United States Burean Reclamations. Kemudian American Society Testing And ForMaterials (ASTM) menggunakan **USCS** dan mengklasifikasikan tanah menjadi dua kelompok yaitu:

- 1. Tanah berbutir kasar merupakan tanah yang mengandung kerikil dan pasir dengan komposisi kurang dari 50% berat total yang lolos dari saringan No. 200. Kelompok ini diberi simbol untuk menandakan setiap materialnya dimana simbol G diberikan untuk tanah yang berkerikil, S untuk tanah berpasir, W untuk tanah bergradasi baik dan P untuk tanah bergradasi buruk.
- 2. Tanah berbutir halus ialah tanah yang lolos saringan No.200 lebih dari 50%. Simbol yang diberikan adalah C yang menandakan lempung organik, O untuk lanau organik, dan Pt gambut dan tanah dengan kandungan organik yang tinggi

Untuk melambangkan plastisitas, maka digunakan simbol L untuk Plastisitas Rendah (LL<50) dan H untuk Plastisitas Tinggi (LL>50).

2.3 Sifat Fisik Tanah

Tanah merupakan perpaduan dari dua jenis yang berbeda yaitu :

- 1. Tanah kering yang terdiri dari dua fase yaitu butiran dan udara pengisi rongga tanah
- 2. Tanah jenuh terdiri dari tiga fase yaitu butiran, udara pengisi rongga, dan air pori

Berikut nilai-nilai berat jenis tanah

Jenis Tanah	Berat Jenis
	Tanah
Kerikil	2,65-2,68
Pasir	2,65-2,68
Lanau Tidak Organik	2,65-2,68
Lempung Organik	2,58 - 2,65
Lempung Tidak Organik	2,68 - 2,75
Humus	1,37
Gambut	1,25 - 1,80

Sumber: Hery Cristiady hardiyanto 2002

2.4. Lereng Dan Longsoran

Lereng adalah permukaan tanah yang memiliki sudut kemiringan dengan bidang datar (horizontal.

Berdasarkan terbentuknya lereng, lereng dibagi menjadi tiga, yaitu :

- 1. Lereng alam
- 2. Lereng yang dibuat oleh manusia
- 3. Lereng timbunan tanah

Longsoran adalah sebuah pergerakan massa yang terjadi pada tanah atau batuan pada bidang miring, vertikal, ataupun mendatar

- 3 tipe utama kelongsoran tanah, yaitu sebagai berikut :
- 1. Kelongsoran rotasi
- 2. Kelongsoran translasi
- 3. Kelongsoran gabungan

Faktor-faktor yang mempengaruhi kestabilan lereng :

- 1. Jenis dan keadaan lapian tanah
- 2. Bentuk geometris penampang lereng
- 3. Penambahan kadar air pada tanah
- 4. Berat dan distribusi beban

5. Getaran gempa

2.5. Uji Laboratorium

Pelaksanaan pengujian dilakukan di laboratorium BPJN II, dimana sampel tanah diambil dari ruas jalan Provinsi pakkat-dolok sangul.

Pengujian tanah meliputi sebagai berikut :

- 1. Pengujian Index Propertise, Meliputi sbb:
 - Pengujian Kadar Air
 - Pengujian Berat Jenis Anah
 - Pengujian Analisa Saringan
 - Pengujian Batas Atterberg
- 2. Pengujian Kua Geser Tanah
- 3. Pengujian Kuat Tekan Bebas

2.6. Stabilisasi Tanah

Stabilisasi tanah adalah proses perbaikan tanah yang dilakukan untuk meningkatkan mutu dari tanah hingga memungkinkan dilakukan pembangunan kontruksi diatasnya.

Klasifikasi Utama Stabilisasi Tanah:

1. Fisiomekanikal

Cth: Dengan melakukan pemadatan

2. Granolumetrik

Cth: Tanah berkualitas buruk dicampur dengan tanah berkualitas baik

3. Fisiokimia

Cth: Tanah dicampur dengan bahan kimia. Seperti, kapur, zeolith, semen, belerang, dan lainnnya.

4. Elektrokimia

Cth: Menggunakan bahan kimia sebagai zat adiktif

yaitu ; Proses stabilisasi ada tiga Mekanis, Fisis, dan Kimiawi. Namun menggunakan kimiawi, peneliti proses melakukan dengan penambahan campuran pada tanah dengan Zeolith, dan Belerang berperan sebagai yang stabilisator.

2.7. Metode analisa kestabilan lereng

Analisa kestabilan lereng terbagi menjadi 3 kelompok besar yakni :

1. Cara visual

Yaitu dengan cara melihat secara langsung keadaan lapangan pad lereng apakah memiliki indikasi tersebut untuk bergerak dan longsor atau tidak, memiliki tingkat analisa yang keakuratan rendah sangat yang dikarenakan pengamatan dilakukan berdasarkan pengalaman sang pengamat

2. Cara kompulasi

Yaitu dengan cara melakukan hitungan analitik berdasarkan rumus dengan menggunakan metode *Fellnius*, *Bishop*, *Janbu*, *Sarma* dll.

3. Cara grafik

Yaitu dengan menggunakan yang telah standart. Contohnya, grafik taylor, hoek, bray, janbu, cousins, dll. Cara ini dilakukan pada materialmaterial yang bersifat homogen, dan bilamana ditemukan lapisan-lapisan tanah yang heterogen maka dapat dilakukan pendeketan dengan menggunakan cara kompulasi.

2.8. Faktor keamanan (safety faktor)

Dalam analisis kestabilan lereng dilakukan penyederhanaan dengan beberapa asumsi. Secara teoriti sederhana laju pergerakan tanah dan dapat terhenti bila mana kuat gesernya sama bear dengan gaya geser.secara umum faktor kreamanan dapat dihitung dengan rumus sbb:

FK =
$$\frac{gaya \ yang \ menahan}{gaya \ penggerak}$$

= $\frac{\tau f}{\tau d}$

Dimana:

FK = angka keamanan terhadap keamanan tanah

 τf = kekuatan geser rata-rata tanah

 τd = tegangan geser yang bekerja pada bidang

longsor

3. METODE PENELITIAN

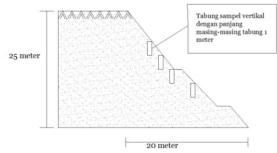
3.1. Lokasi Penelitian

Lokasi penelitian terletak di ruas jalan Provinsi Pakkat-Dolok Sanggul Desa Purba Baringin, Kecamatan Pakkat, Kabupaten Humbang Hasundutan, Provinsi Sumatera Utara, Indonesia.

Gambar 3. 1 Lokasi Pengambilan Sampel Penelitian

3.2. Proses pengambilan sampel

Sampel tanah diambil dua jenis yaitu tanah tidak terganggu dan tanah terganggu, dimana sampel tanah yang tidak terganggu ditujukan untuk pengujian DST. Pengambilan sampel diambil 15 Meter dari permukaan jalan, dengan metode pengambilan sampel sbb:


- 1. Membersihkan terlebih dahulu titik lokasi pengambilan sampel
- 2. Menggali permukaan tanah untuk penancapan tabung sedalam 1 meter
- 3. Menancapkan tabung sampel 1-4 Meter kepermukaan tanah dengan cara vertikal dengan memukul tabung sampai kandas
- 4. Pencabutan sampel dilakukan dengan menggunakan tali dan kemudian ditarik keatas sampai tanah dan tabung keluar

Sumber: Data Primer

Sumber: Data Primer

Sumber: Data Primer

4. HASIL DAN PEMBAHASAN

4.1. Hasil Pengujian Index Propertise

Dari hasil pengujian yang dilakukan jenis tanah tersebut termasuk kedalam jenis tanah lanau berpasir.

Berikut hasil pengujian index propertise yang didapat :

No	jenis pengujian	Notasi	satuan	jenis sampel (tanah terganggu
1	kadar air	W	%	4.5
2	berat jenis air	Gs		2.67
3	atterberg limit			
	a. Liquid limit (batas cair)	LL	%	18.1
	b. Plastic limit (atas plastiss)	PL	%	8.5
4	analisaa saringan			Tertahan
	no.4		%	0
	no.8		%	5.38
	no.16		%	12.74
	no.30		%	19.35
	no.50		%	16.73
	no.100		%	14.62
	no.200		%	4.99
	Pan		%	26.19

4.2. Hasil Pengujian DST (Direct Shear Test)

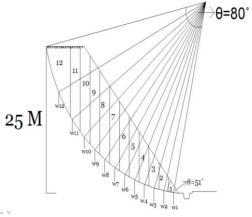
Hasil pengujian *Direct Shear Test* digunakan untuk analisis kestabilan dalam bidang geoteknik, berikut hasil pengujian *Direct Shear Test* tanah terganggu setelah dilakukan campuran tanah, zeolith dan belerang, dan tanah tidak terganggu tanpa campuran

- Hasil pengujian tanah tidak terganggu tanpa campuran

elevasi (m)	sudut geser dalam (Ø)	Cohesi
1	24,58°	0.21 kg/m²
2	26.01°	0.22 kg/m²
3	28.77°	0.23 kg/m²
4	32.64°	0.24 kg/m ²

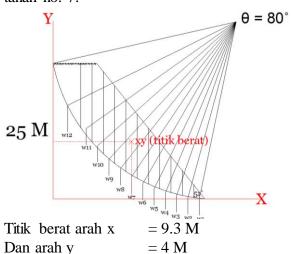
Hasil pengujiaan tanah terganggu dengan campuran

variasi campuran dan waktu pemeraman	sudut geser dalam (Ø)	kohesi (c)	kuat geser maksimum
zeolite 3% + belerang 5% (15 hari)	18.55°	0.18	0.37 kg/cm ²
zeolite 3% + belerang 5% (30 hari)	21.63°	0.19	0.39 kg/cm ²
zeolite 3% + belerang 5% (45 hari)	24.58°	0.21	0.43 kg/cm ²
zeolite 6% + belerang 5% (15 hari)	21.63°	0.19	0.39 kg/cm ²
zeolite 6% + belerang 5% (30 hari)	24.58°	0.22	0.49 kg/cm ²
zeolite 6% + belerang 5% (45 hari)	28.77°	0.22	0.49 kg/cm ²
zeolite 9% + belerang 5% (15 hari)	28.77°	0.22	0.50 kg/cm²
zeolite 9% + belerang 5% (30 hari)	28.77°	0.23	0.52 kg/cm ²
zeolite 9% + belerang 5% (45 hari)	32.64°	0.27	0.62 kg/cm ²

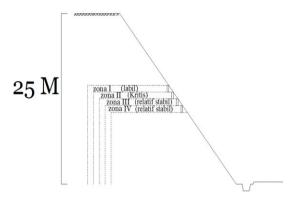

4.3. Hasil pengujian UCT (unconfined compression test)

Pengujian ini dilakukan untuk mengetahui seberapa besar kekuatan tanah dan regangan yang terjadi pada saat menerima beban

elevasi (m)	jenis sampel	Qu (beban maksimum (KN)	luas terkoreksi (cm²)	tegangan (Kpa)
1	1	2.8	20.68	0.14
	2	2.5	21.12	0.12
2	1	3.22	18.08	0.18
	2	3.5	(cm²)	0.2
3	1	4.34	18.66	0.23
,	2	4.2	18.27	0.23
4	1	4.48	20.68	0.22
,	2	4.62	19.86	0.23


4.4. Hasil Analisa Kestabilan Lereng

Tujuan dari analisa kestabilan lereng ini untuk mendapatkan nilai safety factor


Gambar pembagian irisan pada lereng

Pada analisa kestabilan lereng ini peneliti meninjau salah satu irisan lereng, dimana disini peneliti ini meninjau irisan tanah no. 7.

Berikut hasil analisa kestabilan lereng dengan metode *Fellnius* Dan *Bishop*

Fellnius	ı	Bishop		
Elevasi	Fs	Elevasi	Fs	
1 M (zona 1)	1,05	1 M (zona 1)	1,05	
2 M (zona 2)	1,12	2 M (zona 2)	1,12	
3 M (zona 3)	1,26	3 M (zona 3)	1,26	
4 M (zona 4)	1,46	4 M (zona 4)	1,47	

Gambar kondisi tanah

5. SIMPULAN DAN SARAN

5.1. Simpulan

Dari hasil penelitian yang dilakukan di Laboratorium BPJN II didapat hasil bahwa tanah pada lokasi termasuk kedalam tanah lanau berpasir dengan LL=18,10%, PL=8,50% dengan PI=9,18% dengan berat jenis 2,68 dengan sudut geser tanah asli tidak terganggu 32,64° dan cohesi 0,24°, dan sudut geser

tanah terganggu dengan campuran zeolith dan belerang dengan pemeraman 45 hari ialah 32,64° dengan nilai cohesi 0,27

5.2. Saran

- 1. Penulis mengharapkan agar penelitian dilanjutkan dengan melakukan pengambilan sampel secara horizontal
- Penulis juga mengharapkan agar penelitian selanjutnya dilakukan dengan penambahan program plaxis
- 3. Perlunya ketelitian pada saat melakukan pengujian sampel dilaboratorium
- 4. Penulis berharap adanya pembaharuan alat-alat Dilaboratorium Mekanika Tanah Di Universitas Darma Agung yang tidak berfungsi dengan maksimal agar memudahkan dalam melakukan penelitian kedepannya

6. DAFTAR PUSTAKA

- Das. Braja M, Mekanika Tanah (*Prinsip-Prinsip Rekayasa Geoteknik*), Jilid I, 1993, Erlangga, Jakarta.
- Das. Braja M, Mekanika Tanah (*Prinsip-Prinsip Rekayasa Geoteknik*), Jilid II, 1993, Erlangga, Jakarta.
- Laurence D. Wesley, *Mekanika Tanah Untuk Tanah Endepan Dan Residu*, ANDI, 2012, Yogyakarta.
- Hardiyatmo, H. C. 2002, *Mekanika Tanah I*, Jilid 3, Jakarta : PT. Gramedia Pustaka,
- John Tri Hatmoko, *Dinamika Tanah Dan Liquefaction*, :Cahaya Atma Pustaka, 2016, Yogyakarta.
- Hardiyatmo, H.C. 2014. *Mekanika Tanah I*, Edisi Keenam, Gajah Mada University Press, Yogyakarta.
- Debataraja, T.M.S; 2012; Uji Triaksial **Tidak** Terkonsolidasi-Tidak Terdrainase Dan Uji Tekan Bebas Pada Tanh Di Lokasi PDAMTirtanadi Medan Marelan Dan Prediksi Balik Dengan Metode Elemen Hingga; Tesis Magister Teknik Sipil, Univesitas Sumatera Utara